UNCLASSIFIED lOOBi‘ ~86-K

-A188 433

IMPLICATIONS OF CONSERVATION EQUATIONS FOR THE
ETERNINRTION OF ABSOLUTE VELOCITIESCU) CNICRGO UNIV 1
T OF GEOPHVSICRL SCIENCES Vv BRRCILON E

.




Ry

R

:

2

at

;

o

B

Y

i-%‘: : |
335 mn 10 o pe .
L N wpr g2
n 1. = Bas ‘.E" i
: flat EE e
& = .8 "
=T s
22 it s

N = W= '
8 , '

L L4 ® e O ® @ . @
V. Y

: : o L ) o .
‘. ;f R X TPV ba* a™ 0a” , ERTIEN ',; F TR KT ).:;"',.; R0 ";i";i' R -i“-i‘..;j - .-;: -.,"-;..;4.:;.':;'.;? ‘ K VAR, WA N
% foonh i
AR i ' A A R e et Bttty ittt .i:‘,',:.-.!fl.‘f;::fl:!'f:,*g‘,s‘!fe Attty

-
«
J
3
.“ ry |'..‘l" % Y .’,Q"eq [} [ WA Y o'b '3 “,_




e ‘ " .
e e ey
s - »

i

b

w:f:
Pty ™M IMPLICATIONS OF CONSERVATION EQUATIONS
- @ FOR THE DETERMINATION OF ABSOLUTE VELOCITIES
»

{*2 00 Contract N00014-86-K-0034
» 00

) !) P

W <

&5, ! VICTOR BARCILON

:"::o D Department of The Geophysical Sciences -

Rk <L University of Chicago, Chicago, IL 60637

KR C. L. FRENZEN

oy Department of Mathematics

:3 Southern Methodist University, Dallas, TX 75275

b4

ALEX C. WARN-VARNAS

e NORDA, NSTL, MS 39529

]
!

. ABSTRACT

:% The consequences of assuming that density is conserved in the problem of determining
N absolute velocities are investigated. Two questions are considered: (i) the constraints that
'5. the density must satisfy to be compatible with the assumed geostrophic and hydrostatic
.;:!:a dynamics and (i) whether and to what extent the indeterminacy in this dynamics is
:& removed by this additional assumption.
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"With the dawn of ocean forecasting approaching, the need to know velocity fields for use
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1. Introduction

as initial conditions in a prediction scheme is keenly felt. But direct velocity measurements
are still difficult to make, and so we are forced to rely on the classical procedure which
consists of inferring the velocxty fields from temperature and salinity measurements. In

this procedure, we-ar® given the density field p{a,y,2);-andwe must find velocity fields
u(z,y,2),v(z,y,2),w(z,y,2) and a pressure field p(z,y, z) such that

fr=0;"p: (1.1a)
fu=—p;lp, (1.15)

0=-p"'p, -9 (1.1¢)
U+ v, +w, =0 (1.1d)

The notations in the above equations are standard: z,y,z are cartesian coordinates; f is
the Coriolis parameter and g is the gravitational acceleration; o is an average value of the
density.

As is very well known, the integration »f the hydrostatic equation from the ocean’s bottom
at z = - h to a depth z, viz.

p==9 [ paws)d + ey (1.2)

introduces an unknown fanction of z,y denoted here by II. This ‘barotropic’ component
of the pressure cannot be determined from the dynamics (1.1a,b.c.d).

The indeterminacy in the pressure entails a similar indeterminacy in the velocity fields.
Indeed, if we define

Pla,s) = -9 [ piz,)ds (1.3)
then '
u = ~(oof){P, +TL,) (1.4a)
v=(oof) P, + 1.} (1.4b)
The vertical velocity, which is obtained by integrating the continuity equation in the ver-
tical, . | =
w:w(z,y,—h)-—j h(u,+v,)d: (1.5) W
also contains the same indeterminacy. The search for the famous ‘level of no motion’ is g
intimately related to the determination of Il(z, y). M

Following in the footsteps of Worthington (1976), Wunsch (1978), Fiadeiro & Veromsm

(1982) and others. we want to examine whether the addition of extra information in the/ ]
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- form of the conservation of the density field, viz.

.'f:: up; + vp, + wo, = 0 (1.6)
& can determine Jl(z,y).

Mathematically. it is not clear whether Equation (1.6) is compatible with the dynamics
3 (1.1). We shall examine this question first on the f—plane and then on the S— plane.
We shall show that in both cases the density field must satisfy certain constraints. If

i these constraints are satisfied, then for the 5 plane case, but not for the f—plane, Il can
) be determined. Our analysis is carried out in the simplest case of a flat bottom ocean.
2 However, it can be extended to the case where bottom topography exists as well as to
o cases where quantities other than density are conserved.

)

" 2. A mathematical result

o} . . . o 4 . . . .

: An essential step in our analysis consists in fmdm;l/ a z—independent solution of an equation
o of the form

Y Al(z,y,z)II; + B(z,y,z)I, = 1 (2.1
a which holds in a cylindical basin D = {(z.v,z) : (z.y) € D.—h < z < 0}, where D is the
N horizontal cross-section. If A and B themselves are independent of z, then the existence of
Y such solutions is not too surprising. Of greater interest is the case in which such solutions
‘-\.j exist eventhough A and B are z dependent, i.e when

e Al+Bl#£0 in D. (2.2)
P

D Relabeling coordinates if need be. we interpret (2.2) to mean that

B.#0 in D (2.2')

. With the above conditions we have the following result.

”
; Theorem: There exists a z-independent solution Il(z,y) of (2.1) if and only if for all
: (z.v.2)eD

4 (i) A(z.9,2) = kolz,4)B(2,,2) + lo(z.9) (2.30)

¥ (i) lo(z.y) # 0 (2.36)

° (iil) 8;(Ig") — 8z(ke/lo) = 0 (2.3¢)
Furthermore, this solution II(z, y) satisfies

)4

[

s s =5 (z.v) (24a)

L

Il, = —ko(z,y)/lo(z,v) (2.4d)
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Proof: Suppose (2.3a,b,c) hold in D. We must show that a z—independent solution I1(z, y)
of (2.1) exists, and that it satisfies (2.4a,b).

.!: In view of (2.3b). we can write (2.3a) thus: ;
b Az = Bhylst =1 (2.5) ‘
‘. Now, (2.3¢c) implies the existence of a function, say Il(z, y), such that (2.4a,b) hold. Sub-

stituting lg‘ and —Icc.l(‘,'1 by their expressions in terms of IT in (2.4), we conclude that this |
function Il is a solution of (2.1). ‘

Conversely, suppose that Il is a z-independent solution of (2.1) and that (2.2°) holds. Then

. we can differentiate (2.1) with respect to z and write
All; + B, I, =0. (2.6)
3 We note at this stage that A,B — B, A # 0 in D. Indeed, if this were the case, then
K B.(All, + BIL,) = B,,
"\' which is obtained by multiplying (2.1) by B,, could be written as ;
5 B(A.Il, + B,1I,) = B,. |

But as a result of (2.6}, we reach a contradiction. Therefore

: |
3 AB-B,A#0 (2.7) |
o !
o and as a result, we can solve (2.1) and (2.6) for I, and II, to find
o B;
% U= 15,- 54, (282)

A
' n,=-————— 2.8b
¢ y AB, - BA, (2.80)

& ‘ This step is not unglike that taken by Stommel & Schott (1977) and Needler (1985) in
- -~ their study of this problem.

2 We must next insure that these expressions for Il are indeed z- independent. By considering
¢ their ratio, we immediatedly see that

A, = ko(l,y)B,

and after integration we arrive at the condition (2.3a) between A and B. Substituting this
condition in (2.8a.b), we arrive at (2.4a.b). Condition (2.3c) arises from forming I, in

" ~3-




Ao Lad kAl har dlai ket fad el kel Liad Bk Sak gof Mot ol Ak A b g Ll o o ach 4 i o b o a b Ak il i g g b ek B L A 4 & 1.4

two different ways. Finally, the condition (2.7) translates into (2.3b). We can easily verify
that further z differentiations do not introduce other conditions. This completes the proof.

In clusing this section, we give an example of a partial differential equation of the form
(2.1) in which the coefficients A and B satisfy all the conditions of the theorem. The
example 1is:

!
[B(z,v,2) + ——— NIz + B(z,y,2)I, =1
' lz=-9) " i
where B is an analytic function of z. In this case,
kg =1
1
lop = ————
"7 fle-y)
and
I=f(z-v)

3. The f-plane

We consider in this section the casc of the f-plane, simply as a foil for the 5-- plane which
is discussed next. In this case, the flow is horizontally non-divergent. This, together with
the fact that the bottom is flat, implies that

w=0 (3.1)
Thus, the added conservation equation reads
upy +vpy, =0 (3.2)

Making use of the hydrostatic and geostrophic balances, this equation can be written as
follows:

—PyPz: + P2Py: = 0 (3.3)
and since p? + pi is not identically zero in D lest the ocean would be at rest. this implies
that

(2)-
’ Py
ie.
P: = —py tanag(z, y) (3.4)
or equivalently
v(z,y,z) = u(z,y, z) tanap(z, y) (3.5)

Thus, at a given latitude and longitude, the velocity, which is purely horizontal, has the
same direction for all depths! This result, in turn, places some constraint on the data.
Indeed. substituting (3.5) in (3.2) shows that

Pz + pytancy =0 (3.6)

-4 -
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o This constraint is typical of the constraints the conserved quantity must satisfy for the
159 data to be compatible with the assumed dynamics. What this means in practice, is that
:' at each station, z—independent ap are generated by passing the best fitting line passing
" . through points with absiscas p, and p, (or whatever the corresponding quantities are for
ag "/ the case at hand). Figure | shows an attempt to determine one such angle ap from data
'.';u"" from the REX (Regional Energetics Experiment) taken on August 13, 14 and 15 1985 at
:, a station in the North Atlantic located at latitude 37° N and longitude 64° E. The
:f.,' density was obtained from AXBT temperatures measured every two meters up to a depth
N of 743 meters merged with climatological salinity data. Figures 2(a), (b) and (c)*show the
3 same data segregated by depth.

)

:',: As we shall see, a similar constraint arises on the 5—plane.Having satisfied this constraint,
b are we now capable fo determine [I? The answer is unfortunately no. Indeed, from the

" o,

o definition (1.3) of P. it follows that:

o P, + P,tanag =0 (3.7)
A
::‘: This means that the baroclinic components of the flow field satisfy the conservation equa-
:' '.:'_: tion by themselves. Therefore, the need for a barotropic correction is not imperative. From
e (3.4) and (3.7) it follows that

j‘_: .+, tanao =0 (3.8)
:':: I we were forced to proceed further, then we would need to know the distribution of
S sources and sinks at the edge of our basin in order to solve this equation for II.
v 4. The §5-plane

: ~,, Because of the 3-effect. the horizontal mass divergence is —8v/ fo and therefore the vertical

> velocity as given by (1.5) is

b

2 wlens) =555 [ olewa)ar (4.1)
B )
AU or in terms of P and II

w= (5/73!’0){/" P, dz' + [z + h)1i,} {4.2)
We shall find it convenient at times to write
W = (B/ f3p0) / . P, d?' (4.3)

The conservation equation for p now becomes

{Pv +(Blz + h]/ fo)p M1z — p:Ily = —py P + p2 Py — (pofo)p. W (44)

* We are indebted to Dr. Ted Bennett for providing us with these figures.

-5-




Y e PR RTRyTR mmwuw‘n'mmmmwm

)

o
e The question once again is whether the right hand side of (4.4) vanishes, i.e. whether the
. ‘:3: baroclinic fields identically satisfv the conservation equation. We recall that for 5 = 0 the
\E answer to this question was always yes. lf each side of (4.4) is separately zero, then the
> density field which makes up the data is constrained to satisfy two distinct equations. The
i equation stemming from the baroclinic part is
W
o —py Pz + p: Py — (p0fo)p. W =0 (4.5)
' whereas that from the barotropic part yields

;" pz + {py + (Blz + h)/fo)p.} tanag = 0 (4.6)
Y,

K ) where ag is, as previously, solely a function of z and y. Are there isopycnal surfaces which
ey . .

o satisfy both of the above equations?

K We shall show that this question must be answered negatively. Integrating (4.6) over z

o and using the definition (1.3) of P. we deduce that

S

o h

:g, P, + tanag{ Py + '-BLZ—_-t—)pg + E—P} =0 (4.7)

fo fo

::': Next, we eliminate p, and P, from (4.5) using (4.6) and (4.7). The result is:

e

"-::j 2z 2 z

o d By p{P + pg/ dz'} = ﬂfo'lp,{—P,/ dz’ + ./h P, dz'} (4.8)
- ~h -h -

-:j If we differentiate this equation with respect to z, we see that

"

o :.J z z z

::i lsfo—ll’u{P"' Pg/h dz'} =-‘/3f0.1pu{—P;./. dz' +-/h P, dz'} (4.9)
" - -h -

- The above two equations imply that

4
N PePzr = PzPz:

XX

i.e- |
p: = pztanyo(z,y) (4.10) |

. -
.::'1'5/ \d e

We have thus reduced the problem to finding whether there exists a function p(z,y.z)

x> which satisfies the system of equations
P *-'
Eylpl = tanvop: — 0, = 0
:-_: Ealp| = p, + tanagp, + (Blz + h|/fo) tanagp, =0
\‘
R :: At this stage we appeal to the theory of systems of first order partial differential equations
" (see e.g. Smirnov 1964, p.34.). The first step in the theory consists in attempting to derive
. further independent equations for p. Such additional equations are obtained by forming
i
:'::; -6-
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Poisson brackets. Thus, denoting temporarily z,y,z by 2y, 23, 23 and p,, p,, p. by p1, P3,
p3. the theory leads us to consider

3
Eslpl = ) _{(0E1/02,)(8Ex/0p.) - (OE:/0z,)(OE:/0p.)} = 0

1—1

l.e.

~[(8+0/82) + (80 /By) tan ag)(cos %) ~*|p+ + [(Hexo/Oy) tan vo(cos an)~?]py
+[B(z + h)f 1 (Bao/By) tan vo(cos an) ™2 — Bf ! tanaglp, =0 (4.11)

This equation is independent of the other two. Having obtained three independent, homo-
geneous. first order partial differential equation for p which is a function of three indepen-
dent variables, the theory tells us that » = constant is the only possible solution.

Thus, on the 3-plane the baroclinic velocity fields cannot satisfy the density conservation.
Therefore. we can write (4.4) as

AL, + BI, =1 (4.12)

where

’

4= Pt p[B(z+ h)/fol
Psz-P,P;"P;AW ’

and f._F

Pz
B=- . 4.13b
sz""psz—Pzw ( )
A pof
If we assume that A and B are functions of depth, then the theorem yields the following
constraint on the data

{4.13q)

A = ko(z,y)B + ly(z, y)

and the usual expressions for the barotropic components, namely

M, =l5'(z.v)

Iy = —kolz,¥)/lo(z.v)
On the 3-plane, the density conservation is stringent enough to determine the barotropic
field completely.
5. Concluding remarks

We have attempted to elucidate the question of how a depth dependent conserved field
can remove the depth independent indeterminacy of the velocity fields. We have seen that
this attempt leads naturally to a characterization of the class of acceptable density fields.
In turn, this suggests a very natural variational procedure, namely that the “distance”

-17-
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between the data and this set of acceptable densities be mimimized. For the G5—plane,
there is a unique velocity field associated with this projection. Mr. T. Bennett of NORDA
is currently implementing this procedure on data from the North Atlantic.

Acknowledgement: One of us (VB) would like to thank ONR for supporting this research
under grant N00014-86-K-0034.

LYON n‘y‘.ll‘

OO S PO PO PO O P ) 0 K. ) ;t.qtt
RO SR AN e j‘.‘z'_!h"ﬁ-f.‘a'..?t‘,.‘ sad et 'u,.'n .’s l«‘ R .‘a‘ ! r‘.‘i‘-’b Wyt s&.uﬂ‘au.'h,l.y.l 4,096,070, Vh o H'H A uH 0 DT

b, ‘AI



SR A ahi aad ahd 228 e~ aa-fa _ad oRat Satolad Ral SAL I TR hER it adhi ek dh e
T U T T W T WA T T TN VW O T

B

g

Y REFERENCES

)

.-::, Fiadeiro, M.E. and G. Veronis. 1982. On the determination of absolute velocities in the
by ocean. J. Mar. Res., 40, 14.-182.

«‘:' Needler, G.T. 1985. The absolute velocity as a function of conserv4d measurable quantities.
e Prog. Oceanog. 14, 421-29.

S

NS

W Smirnov, V.I. 1964. A course of higher mathematics, vol. IV, ; ddison- Wesley

'.:‘ Stommel. H. and Schott, F. 1977. The beta spiral and the determination of the absolute
'; velocity field from hydrographic data. Deep Sea Res.. 24, 325-29.

Q' .

Worthington, L.V. 1976. On the North Atlantic Circulation. Johns Hopkins University
gt Press. 120pp

~ Wunsch, C. 1978. The North Atlantic general circulation west of 4. W determined by
“f inverse methods. Rev. of Geophys. and Space Phys., 168, 4.3-620.

P s N s S

-.';‘x"-. 21 LALr &&’

L Yo

XSS

C AL A R CONOGPAKY 4
SO0 'nu" S c“h‘"b?ﬁ'mh Mou‘u‘ n!'o!'a DA -‘na'us" Mot i " \‘\



‘:n::: Figure Captions

SOOX Figure 1. N-S density gradient vs. E-W density gradient at 37° N and 64° E for
‘ different depths. The measurements were taken on August 13-15, 1985 as part of the REX
experiment. The stars correspond to measurements over a depth from 105m to 203m. Open
triangles correspond to depths from 205m to 603m. Finally, dotted circles correspond to

depths from 605m to 743m. A stright line passing through the origin with a slope of -.7
provides a good fit.
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Figures 2. Same data asin Figure 1 segregated by depth. (a) Upper layer (105m to 203m).

Note the large scatter. (b) Intermediate layer (205m to 603m). (c) Bottom layer (605m to
743m)

FNY

53

"'o'"
gyt
S

-«

k
7’7
P

P K5
AL -t

. g -
Nt e
YL T
Wt
. v

s
CLN AN

Vi
b
s

Fi_

LA
Sl

4

"l‘

PRGN 1A

SV PR

TR 'S 9

-

2

9

e -10 -
Yl
o
~ g
[\ ').'
3 1]
gt
04
.
._n

i) X .
] o e ¢, n Xty X
IO T 00 I I W

5

e I G Rt TR NS T N TANAN
N S RN IS R L G R e

Tl Yty
SO A\ Dt [

- ar A
R ’~‘1"€"\9~‘1.~‘A "».4'!‘1' n




T

105-743 m
2 m resolution




4 i T T
105-203 m
3 2 m resolution
N
: 2 *“_* —1
ol % 4
2 %5¢
% K
§ » ’%‘* »
-)(* o
9(-**
, €
1 l
-.25 0
e x 10°

d X




s | | T
X 205-603 m
2 m resolution

0 — X 106
d X

XLy
-
A

! OO0 OSACACANDOCE AT A0 A RO X CAAEDAR LANRERGSNINOINONGRNOLE
NS A ATG O ADON .‘!,‘ ':‘. 10 ':"t',‘l,a’i.e‘i’q"« it "."Ai!*.s',*‘t‘ﬂ"‘ AR AR AS O ,‘N‘- CRa -“1.""& Y AN Gy



PELFTE Ty W iwTT W T E TR T

YT oY La o Bnt haie ton

LM

4 ] | |
® 605-743 m
2 m resolution







